Lecture 23

In this lecture, we'll start with on extremely powerful method in whole of mathematics:group actions.

Recall Cayley's Theorem :- Every group G is isomor--phic to a group of permutations. So is $g \in G = v g \in S_n$ for some n and hence g can be viewed as a permutation! The idea of an action of a group is to take this point of view further. Let G be a group and $X \neq \phi$ be a set. We'll

see two definitions of a group action.

Definition 1:- An action of G on X is a map

i.e. if we first look at h.x which will

be an element of X and then act by g thus getting $g \cdot (h \cdot x) \in X$ or we act on x by the element $gh \in G$ to get $(gh) \cdot x$, the end result should be the same.

To see the second definition, recall that
if X is a set then the
$$P(x) = \{f: x \rightarrow x \mid f \text{ is a bijection } \}$$

is a group under composition of functions.

$$\frac{\text{Definition 2}}{\text{An action of G on X is a}}$$
homomorphism $\mathcal{Y}: G \longrightarrow \mathcal{P}(X)$.
As an action is nothing but a homomorphism

<u>Proposition 1</u> Definition 1) and 2) are equivalent. <u>Proof</u>:- We will assume Definition D and

prove Definition 2) and then vice-versa.
Assume Def? 1 , i.e., we have a map

$$\alpha: G \times X \rightarrow X$$
 satisfying the two properties.
We wont a homomorphism
 $g: G \rightarrow P(x)$
Define $g(g) = \sigma \in P(x)$ where
 $\sigma: X \rightarrow X$ is given by $\sigma(x) = \alpha(g_{1}x)$.
Claims σ do belongs to $P(x)$.
If $\sigma(x_{1}) = \sigma(x_{2}) = 2 \quad g \cdot x_{1} = g \cdot x_{2} \quad \forall g \in G$.
So take $g = e = p \quad e \cdot x_{1} = x_{1} = e \cdot x_{2} = \sigma e_{2}$
 $x_{0} \quad x_{1} = x_{2} = 0 \quad \sigma \text{ is one-one.}$
Also, for $x \in X$, $\alpha(e, x) = \sigma(x) = e \cdot x = x$
 $= 0 \quad \sigma \text{ is onto.}$
Thus the map $\sigma \in P(x)$.
Claim 2 g is a homomorphism.
For $g, h \in G$

= \mathcal{V} $\mathcal{V}(gh) = \mathcal{V} = \mathcal{V}(e^{-1}) + \mathcal{V}(g) + \mathcal{V}(gh)$ So \mathcal{V} is a homomorphism = \mathcal{V} Def 2 is satisfied. Now assume Def 2 i.e., a homomorphism $\mathcal{V}: \mathcal{G} \longrightarrow \mathcal{P}(X)$.

We want to find $\alpha: G \times X \longrightarrow X$ which satisfies the two proporties.

Define $\alpha: G \times X \longrightarrow X$ by $\alpha(g, \pi) = \mathcal{P}(g)(\pi)$ Note $\mathcal{P}(g) \in \mathcal{P}(x)$ which is a bijection on X, so $\mathcal{P}(g)(\pi)$ makes sense.

So,
$$d(e_1x) = \Psi(e)(x)$$

But φ is a homomorphism $=\nabla \Psi(e) = \operatorname{Td}_X$
 $=\mathcal{P} \quad d(e_1x) = \Psi(e)(x) = \operatorname{Td}_X(x) = \infty$
So properly 1) is satisfied.
For $g, h \in X$
 $d(g, \alpha(h, x)) = d(g, \varphi(h)(x)) = \Psi(g) \cdot \Psi(h)(x)$
 $= \Psi(gh)(x)$
 $= d(gh, x)$

as y is a homomorphism. Thus Def.2 is also satisfied.

Let's see some examples of a group action.

1

Examples
1. Define
$$\alpha: G \times X \longrightarrow X$$
 by

$$d(g,x) = x \quad \forall \quad g \in X.$$
Then for $e \in G_i, \quad d(e_ix) = x$

$$d(g_i d(h_ix)) = d(g_ix) = x \quad \text{and}$$

$$d(gh,x) = x \quad = v \quad d(g, d(h_ix)) = d(gh_ix)$$
So d is a group action.

2. Consider
$$S_3 = \{\sigma : \{1, 2, 3\} \rightarrow \{1, 2, 3\} | \sigma is$$

a bijection j

and
$$X = \{1,2,3\}$$
. Define
 $d: S_3 \times X \longrightarrow X$ by
 $d(\sigma, i) = \sigma(i)$, $\sigma \in S_3$, $i \in X$, $i.e.$,
 $j \quad \sigma \in S_3$ is for example [123], then
 $d(\sigma, i) = \sigma(i) = 2$
 $d(\sigma, 2) = \sigma(2) = 3$
 $d(\sigma, 3) = \sigma(3) = 1$

and similarly for all or 53.

Then
$$d(e,i) = \epsilon(i) = i$$
 $\forall i \in \{1,2,3\}$
and $d(\sigma, \alpha(\tau,i)) = d(\sigma, \tau(i)) = \sigma \cdot \tau(i)$
 $= \alpha(\sigma \cdot \tau, i)$
Thus α is an action of S_3 onto $\{1,2,3\}$.

Infact, by the same procedure as above

$$d: S_n \times \{1, 2, ..., n\} \longrightarrow \{1, 2, ..., n\}$$

given by $d(\sigma, i) = \sigma(i)$, $\sigma \in S_n$, $i \in \{1, 2, ..., n\}$
is an action of S_n onto $\{1, 2, ..., n\}$.

3. Let G be a group and let
$$X = G$$
 itself
Define $\alpha : G \times G \longrightarrow G$ as
 $\alpha(g_1h) = g \cdot h = gh$
Then $\alpha(e,h) = e \cdot h = h$
 $\alpha(g, \alpha(h,k)) = \alpha(g, hk) = g(hk) = (gh)k$
as G is associative.

Thus & is an action of G onto itself. This is called the left action of G onto itself.

4. Let G be a group and let
$$X = G$$
.
Define $\alpha : G \times G \longrightarrow G$ by
 $\alpha(g,h) = ghg^{-1}$ $\forall ghe G$
 $\alpha(e,h) = ehe^{-1} = h$
 $\alpha(g, \alpha(h,k)) = \alpha(g, hkh^{-1}) = g(hkh^{-1})g^{-1}$
 $= (gh)k(gh)^{-1}$

So & is an action of G onto itself called the conjugate action or action by conjugation.

Related to any action of G onto X, we have two sets:-Orbit of an element in X. For xEX, the orbit of xEX is

$$O_{x} = \left\{ \begin{array}{l} \alpha(g_{1}x) = g \cdot x \end{array} \middle| \begin{array}{l} g \in G \\ \end{array} \right\}$$

i.e. for $x \in X$, look at the action of all
elements in G on x and collect them, it
will be O_{X} . Note that $O_{X} \subseteq X \quad \forall \ x \in X$.

Stabilizer of an element in X
For
$$x \in X$$
, the stabilizer of x is
 $Stab(x) = \{ \{ g \in G \} | d(g,x) = g \cdot x = x \} \}$
i.e., it is the set of all those elements in G
whose action on ∞ do not move ∞ .
Note $Stab(x) \subseteq G$ if $x \in X$.

Note that due to property D in Defⁿ I of on action, e.x = x & x & x > X = D & x & X, e & Stab(x) = D Stab(x) & ϕ . To fact, $\frac{P_{\text{rop}}}{P_{\text{ros}}} = \frac{S + ab(x)}{ab(x)} \leq G , \forall x \in G.$ $\frac{P_{\text{ros}}}{P_{\text{ros}}} = \frac{A + bb(x)}{ab(x)} \leq \frac{A + bb(x)}{ab$

Let's calculate Stab(x) for examples 3. and 4. abore.

4) Conjugate action of G onto G.
For
$$a \in G$$
,
 $Stab(a) = Sg \in G | \alpha(g,a) = aS$
 $= Sg \in G | gag^{-1} = aS$
 $= Sg \in G | ga = agS$
 $= C(a)$, the centralizer of a in G.

So, for the conjugate action, the Stabilizer of any $g \in G$ is C(g).

The reason I introduced these objects is that they are intimately related to each other, which is the content of the next theorem.

Theorem (Orbit-Stabilizer Theorem)
Let Gract on a set x. Then
$$\forall x \in X$$

[G: Stab(x)] = $|O_X| \cdot |f$ Gris finite, then
Since [G: Stab(x)] = $|G| = |G| = |G| = |Stab(x)| \cdot |O_X|$.
[Stab(x)]

So the theorem is telling up that the # of distinct left or night cosets of Stab(x) in G is precisely the coordinality of O_x .

We'll prove this theosen in the next recture.

